亚洲熟妇无码|四虎影库在线观看|免费网站www|欧式少女16集全免费观看电视剧|欧美成人护士h版|性爱视频一区二区|玖玖玖玖玖玖玖玖玖|怡红院久久,操逼图片免费看,第一福利大香蕉,男人Av站

Wafangdian Guangyang Bearing Group Co., Ltd.

Home >> Industry News

Contact Us

Tel:400-0058-999
Add:No. 2200, Section 3, South Street,Wafangdian City, Liaoning Province, China
Tel:0411-85647733
Fax:0411-85647666
Website:www.czsuoda.com

Industry News

PINPOINTING BEARING FAILURE EARLY

Release Time:16 Jan,2017

A sophisticated signal processing technique can help to pinpoint bearing failure at an early stage. Chris Hansford, Managing Director of Hansford Sensors, explains. Experienced operators can often tell if a machine is not working properly, on the basis that is does not ‘sound right’. The same principle can be applied – using modern electronics – to identify the exact cause of the problem. Sensitive accelerometers can detect and analyze the vibrations from industrial equipment, highlighting problems such as misalignment or bearing imbalance. The technique is known as vibration analysis. It can identify bearing failure in the very early stages, when there is a microscopic defect on the raceway, for example. The problem is that the identifying signal is usually drowned out in all the other noise emanating from the machine. Filtering device – acceleration enveloping It is vital to catch these kind of defects as early as possible, to stop them developing into more serious problems. One way of homing in on the signal of interest – and filtering out the ‘noise’ – is to use a signal processing technique called acceleration enveloping. It works by progressively filtering out unwanted parts of the vibration spectrum until the signal of a bearing defect can clearly be seen – extracting low level, repetitive vibrations from the noise around it. The unfiltered waveform from a defective bearing is a mix of low and high frequencies, with no obvious pattern. The first step is to apply a band pass filter, which isolates only the frequencies in which the signal of interest is hiding. Some experience is needed in order to know how to choose the high- and low-pass frequencies. The filtered output will identify repeating, high-frequency signals, though more steps are required to pinpoint the one specific to the bearing defect. First, the waveform is rectified – inverting the negative part to positive – and this is then enveloped (or demodulated) by tracing a line over the general shape of the rectified signal. This ‘envelope’ is now used as a true vibration signal – helping it to stand out from the noise. The envelope helps to contain regularly spaced signals, such as a single defect on a raceway. Other causes of noise, such as shaft rub, are random – so will not produce evenly spaced peaks. Technique in action Acceleration enveloping is most commonly used in roller bearing systems but can also be applied in areas such as electric motors and gearboxes. It is a key factor in the success of condition-based maintenance (CBM) programs. While enveloping is most commonly used with signals in the acceleration spectrum it can be used to improve other measurements, such as a shock pulse. Once the signal has been filtered, the information can be collected from the accelerometer using a data collector, ready for review and interpretation by a specialist – who can decide whether or not maintenance work is required immediately or can be planned as part of routine schedules. While acceleration enveloping may seem to be the definitive answer to detecting bearing failure, it cannot be universally applied to any machine. The technique detects faults involving repetitive, metal-to-metal interactions. Anything that masks this, such as gaskets or dampers, may put a machine outside its scope of use. Success factors If an application is suitable for enveloping, several factors will help to ensure better results. Firstly, accelerometers to measure the low-level signal should be selected carefully – in the proper frequency range – to suit the needs of the particular machine or application. Secondly, accelerometers should then be correctly mounted – close to the component being monitored, on a flat, clean surface to guarantee consistent results. Poor mounting reduces reliability and can make collected data redundant. Once accelerometers have been installed and calibrated, data readings should then be taken at regular intervals over a period of time to allow accurate trend analyses to be produced. This allows a steadily deteriorating condition to be identified, for example. It is important to understand that the information provided is not a simple ‘yes/no’ answer – and requires some skill and experience to interpret: the amplitude of a worsening condition can actually reduce over time, for example, as the imperfection becomes slightly smoother. The potential benefits of acceleration enveloping are clear, but it would be unwise to rely on the technique alone. Implementing it as part of a wider monitoring and analysis regime can be far more effective, helping plant engineers to safeguard the health, performance and productivity of all the assets under their care. Acceleration Enveloping in action According to the Global Wind Energy Council, there were 268,000 wind turbines in operation at the end of 2014, with each turbine having an average of 8,000 separate components. Of these, a large number are associated with the drivetrain, which has separately been recognized as the major cause of extended downtime. Wear in gearboxes and bearings, in particular, is known to cause problems. Although wear tends to be gradual rather than catastrophic it can nonetheless lead to expensive repairs that, in terms of downtime plus the possible need for heavy lifting equipment, gearbox replacement or generator rewinds, cost far more than simply the cost of a replacement bearing or gear unit. Regular vibration monitoring can prevent these issues occurring. The complexity of a typical wind turbine does, however, present a challenge for vibration monitoring. For example, the main turbine, gearbox, and generator often have more than 15 rolling element bearings installed, while the gearbox incorporates a series of stages, each with multiple gears. These components generate unique vibration signatures, with different amplitudes and frequencies, which can be difficult to isolate from each other and that can be masked by noise from surrounding systems. This is where a technique such as acceleration enveloping can play a crucial role, enabling vibration analysts and maintenance engineers to separate vibration signatures and identify the changes in signal conditions, which can indicate increasing wear. To be effective, acceleration enveloping requires the use of multiple accelerometers, fitted to all key rotating parts. These include the main bearings, planetary, intermediate and high-speed gear stages, the generator (inboard and outboard bearings) and ideally the nacelle traverse and axial movements. In each case, there are several critical factors that must be considered. In particular, each accelerometer must be mounted securely on a clean and solid base, and as close to the component being monitored as possible; normally, standard M8 mountings are used. It is also important to collect data consistently, to enable any change in operating conditions or trends over time to be accurately identified at the earliest possible stage. It should also be noted that the frequency of enveloping signals is related directly to the speed of shaft rotation. On wind turbine drivetrains, for example on the generator output shaft, rotational speeds can be relatively slow and may, therefore, require the use of special purpose low frequency AC accelerometers, with a sensitivity of between 100mV/g and 500mV/g. The sensors are generally hardwired back to a junction box within the nacelle and then to a switch box mounted at ground level. Signals can either be monitored on-site using handheld data collectors, which feature software capable of automatically calculating acceleration enveloping, or are transmitted to a remote monitoring center for subsequent analysis.
|
Quick links
Follow Us

Mobile Website

Wechat Platform

GroupMore

Wafangdian Guangyang
Bearing Group Co., Ltd.

Equipment & Capability

Copyright@2017Wafangdian Guangyang Bearing Group Co., Ltd.

大香蕉操欧洲美女| 国产精品高潮呻吟久久av码| 高清无码在线观看一| 外国a片黄色录像| wWW好吊操妞干网| 三级片美女中文字幕视频| 99久久久无码国产精品一区二区| 亚洲区动态图| 台湾自拍偷AV| 超碰美女乱仑| 啊….好舒服视频在线观看日本| 天天拍夜夜肏| 亚洲综合一区中文字幕| 人人人人人骑妻| 日日人日人人夜夜夜摸摸人| 人人交人人| 五月丁香福利| 风间由美50分钟无码流出| 国产精品无套白浆| 亚洲精品va| 激情小说专区| 丁香九月久久久| 五月天色色小说| 国产精品偷伦视频免费看。| 夜夜乳三级| 亚洲成人婷婷五月天| 日韩在线播放网页| 无套女疯狂被躁出白浆| 女同视屏| 日韩女优肏穴在线看| 97超碰97资源| 日日射天天插人人爽| 国产成人999| 成人在线 東熱激情| 操你网天海| 激情性爱乱伦| 中文字幕无码一区在线视频青青| 大香蕉这里只有精品| 大姐AV.COm| 国产亚洲综合久久| 人人操女人干美女人免费| 又大又粗又黄黄色网| 丁香区欧美性| 又粗又长又爽亚洲av电影| 人人妻久久avwwww| 日韩色影院| 射射射色| 5e5e5ecom五月丁香| 国产又粗又猛又大的视频| 91.乱伦熟女视频| 东京热黄色无码乱伦视频| 美国久久性爱| 先锋影音av日日夜夜| 美国xxxx内射| 青草自拍偷拍视频| 欧美区日韩区国产区| 国熟色色90| 欧美成人经典三级在线观看| 91群交乱伦| www.avtt欧美情色.com| 午夜亚洲综合激情乱伦久久| 韩国AV嗯嗯嗯嗯啊啊啊| 五月榴花AV| 亚洲欧美自拍偷拍色图| 东京天堂热狠狠撸| 欧美精品一区三区在线观看| 无码c区| 国外无套内射对白| 国产人成高清在线视频99| 激情另类二区亚洲| 青青草原视频欧美福利在线观看视频| 五月婷婷激情交配| 91操!操!操!| 人人鲁人人爽| 人妻 六区| 98久久蜜桃网| 蜜臀国产TV天堂久| www.嗯嗯嗯嗯| 性色一区二区三区| 亚洲国产精品成人av在线网站| 男人天堂成人AV在线| 我爱aV我爱aV婷婷五月| 色坤坤在线网站上| 最新国产拍偷乱偷精品| 91精品 久久久青草| 久久久久人妻精品一区三寸| 91网站入囗| 黑人无码精品|